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SUMMARY 
We consider finite element methods for vorticity formulations of viscous incompressible flows. In two- 
dimensional settings the familiar streamfunction-vorticity formulation is examined. We focus on its 
accuracy, especially when using low-order elements, and on its use with a variety of boundary conditions and 
in multiply connected domains. In three dimensions the velocity-vorticity formulation is shown to be 
preferable, and a promising algorithm using this formulation is presented. We close by considering the 
recovery of the pressure field once the streamfunction or velocity fields are known. In particular we describe 
and analyse an algorithm for recovering the pressure which is based on well known methods for the primitive 
variable formulation and which requires no boundary conditions on the pressure at solid walls. 
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STREAMFUNCTION-VORTICITY METHODS FOR PLANE FLOWS 

The streamfunction-vorticity formulation has been very popular for the approximation of viscous 
incompressible plane or axially symmetric flows. The main advantages of using the 
streamfunction-vorticity variables compared to the use of the primitive variables, i.e. the velocity 
and pressure, are twofold: first, the incompressibility constraint, i.e. the continuity condition, is 
satisfied by definition, and secondly, there are two, instead of three, unknown fields. On the other 
hand, some boundary conditions, e.g. no-slip, are easier to enforce in the primitive variable setting; 
indeed, finding boundary conditions for the vorticity at solid boundaries is a major, and classical, 
problem connected with streamfunction-vorticity calculations. Furthermore, multiply connected 
domains, which pose no algorithmic difficulties for primitive variables, do require special 
treatment in the streamfunction-vorticity setting. 

Here we are concerned with finite element methods for the streamfunction-vorticity formu- 
lation of viscous incompressible plane flows. Most of our discussion extends to the axially 
symmetric case as well. Because we are mainly concerned with spatial discretizations, we only 
consider steady flows. We first present a finite element algorithm, paying particular attention to 
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the incorporation of a variety of boundary conditions into the algorithm. We then discuss an 
efficient means of treating multiply connected flow regions. Finally we investigate the accuracy of 
the finite element approximation. Algorithms similar to the one considered here are discussed in 
References 1-7 from both computational and implementational points of view. 

Boundary conditions on the streamfunction and vorticity 

The streamfunction-vorticity equations for plane steady flow are 

-vAw+ ----- = O  in R: (it : :: a> 
where $ denotes the streamfunction, 0) the vorticity, v the kinematic viscosity and R a bounded, 
possibly multiply connected, region in R 2  with boundary I-. We denote by To the exterior 
boundary of R and by Ti, i =  1, . . . , m, the remaining portions. For simply connected domains 
m=O. The exterior boundary may be a true physical boundary, an artificial boundary introduced 
in order to render the computational domain finite or a combination of both. In order to enable 
the specification of different boundary conditions on the outer boundary To, we subdivide it into 
three possibly disjoint segments: roj,j= 1, . . . , 3. 

Along the boundaries Ti, i =  1, . . . , m, and To, the velocity is specified so that 

$ = 4 i + a i  and a$/&= - g i - z  on ri,i=1,. . . , m ,  (3) 

$=qo and d$/dn=-g , .T  on ro,, (4) 

where g, (x) ,  i =0, . . . , m, is the prescribed velocity on the corresponding segment of the boundary, 
4i(x), i = O ,  , . . , m, denote functions such that d4,/dz=gi.n, and T and n denote the unit 
counterclockwise tangent and outer normal vector to the boundary respectively. Usually the 
functions qi(x) may be easily determined from g i  via simple integrations and in the general case 
may be determined to arbitrary accuracy through the use of numerical quadratures. The 
boundary conditions (3) or (4) apply, e.g. at walls, in which case the prescribed velocity vanishes. In 
(3) the constants a, are to be determined as part of the solution and reflect the fact that the 
streamfunction may be specified at only one point on one boundary segment. In this work we have 
chosen to fix the streamfunction on Tol u To2. Of course these boundary segments may be empty, 
in which case we may specify that a, =O. Thus we need to consider two different cases: 

Case I To, LJ ro2 is not empty; 
Case I1 Tol u TOz is empty. 

For Case I we set m, = 1 and for Case I1 we set m ,  = 2 .  
Additional conditions are required in order to fix the constants ai. These can be deduced from 

the requirement that the pressure is a single-valued function and are easily derived from the 
momentum equation; indeed, one finds that 

jri (vg - u g  - n) dz =0, i = m , ,  . . . , m. 

On Toz we specify the vorticity and the normal component of the velocity; such boundary 
conditions are useful at, e.g. inflow boundaries. In this case we have 

$=yo and o = w o  on Toz, (6) 
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where wo(x) is the prescribed vorticity and qo is defined as above. Finally, on the remaining 
boundary segment To3 the tangential component of the velocity and the normal derivative of the 
vorticity are specified; these boundary conditions are of use, e.g. on outflow or wake portions of a 
computational boundary. For simplicity we only consider homogeneous versions of these 
boundary conditions; we then have 

a* a w  -=0 and -=0 on ro3. 
an an  (7) 

This completes the specification of our problem. Thus we seek approximations of the functions 
I) and w and the constants a ,  i=ml,  . . . , m, which solve (1H7). 

The Jinite element algorithm 

We will define a finite element method in the context of quasi-regular triangulations of R and in 
the case where R is a polygon. Other element shapes, e.g. quadrilaterals, and curved boundaries 
can be treated in the standard manner. Throughout, h will denote the maximum of the diameters 
of the triangles. Also, P: denotes the finite element space of functions which are continuous over R 
and which are polynomials of degree 1 in each triangle. 

The streamfunction and vorticity trial sets, 9" and V h  respectively, are defined, for some integers 
k and 1 greater than zero, by 

s"=($EP:I$=q! on Tol and TO2,and 
$=q:+a: on Ti, i =  1,.  . . , m, u: arbitrary constants (8) 
except that u: = O  for Case 11) 

and 

vh = (w E P ~ I O  = w! on ro2), (9) 

where q:, i = 0, . . . , m, and w! are approximations to qi, i = 0, . . . , m, and wo respectively. For 
example, the former may be taken to be the boundary interpolants, with respect to appropriate 
boundary segments, of the latter. Similarly, the streamfunction and vorticity test spaces, 9'" and 
V" respectively, are defined, for two more integers r and j greater than zero, by 

~=($EP; ($=O on Tol and TO2, and 
$ = c: on Ti, i = 1, . . . , m, c: arbitrary constants (10) 
except that c: = O  for Case 11) 

and 

V" = (w E P;[W = 0 on ro2). (1 1) 

The finite element algorithm we consider is defined as follows. We seek $" E s", w" E V" and m 
real numbers uk,, . . . , such that 

grad$" * grad{"dR = ["go * tdz  + i"gi * zdz for all [" E Y h  (12) 
i = l  " S  Ti 

and 

a*h dR = O  for all +h E 9'". (13) 
a$" aw* 

v 1 gradw" - grad#"'* + la+"( ~ __ - ~ --) 
R ay  ax ax ay 
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All the boundary conditions in (3) ,  (4) and (7) involving normal derivatives are natural to the 
discrete problem (12), (13). Moreover, the conditions in ( 5 )  are natural as well. None of these 
conditions need be required of the test or trial functions. 

By choosing bases for the various test and trial spaces, one may transform (12), (13) into a non- 
linear system of algebraic equations for the discrete streamfunction and vorticity and the 
unknown constants uk,, . . . , uk. Such a direct approach is described in References 6-8. However, 
in defining the bases for Sh and Yh, particular basis functions must be defined which couple all the 
unknowns and equations corresponding to each of the boundary segments Ti, i= m,, . . . , m. Such 
non-local basis functions make for more complicated coding and more costly computations. 

An algorithm for multiply connected domains 

Non-local basis functions may be avoided if one solves (12), (13) with assumed values for the 
unknownconstantsak,,. . . ,a: and withci=O,i=m,,. . . ,m,in(fO). Ofcourse,arbitraryguesses 
for these constants will not result in a discrete solution satisfying (9, even in an approximate sense. 
One could subsequently make a new guess for these constants which hopefully will yield a discrete 
vorticity which better satisfies (5). There are many ways in which such an iteration can be coupled 
with a second iteration for solving the non-linear equations (12), (13). Here we describe a 
particularly simple and efficient method which takes advantage of the fact that any non-linear 
solution scheme involves the solution of a sequence of linear problems. Our discussion is placed in 
the context of Newton's method; however, any other non-linear method, e.g. quasi-Newton 
methods, would do just as well insofar as it concerns this technique for dealing with multiply 
connected domains. 

To begin with, we need to redefine the streamfunction test and trial sets. For simplicity of 
exposition we describe the algorithm for Case I; the modifications necessary for Case I1 are 

s= 0, . . . , m and n = 1, 2, . . . , and define the finite element sets 
obvious. Instead of (8) and (lo), we now select a sequence of m-tuples a(",s)= . . . , a:,.)), 

Sl:,,=($EP:I$=qk on To, and To2, and $ = q : + ~ i " , ~ )  on Ti, i= 1 , .  . . , m )  (14) 

for s = 0, . . . , m and n = 1, 2, . . . , and 

. Y h = ( $ ~ P ; I $ = O  on To*, rO2 and r i , i = 1 , .  . . ,m). (15) 
Here n is the counter for the Newton iteration and the choice of LX("*~) is essentially arbitrary (See 
the next subsection). Then, for n= 1,2,. . . , given the discrete functions $("- l )  and o("- l )  and the 
constants a'"."', s=O, . . . , m, we define $("*")ES;,~ and O(" '~ )E  V h  to be the solutions of 

grad$(".s)- gradid* = j [go * rd t  + j igi  * rdr for all [ E V h  ( 1  6) 
ro I i = I  r, 

and 

for all 4 E .yh ( 1  7 )  
for s=O, . . . , m, where 
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In general none of w(" .~ ) ,  s = 0, . . . , m, will satisfy even an approximation of (5). However, since 
(5)  is linear in o, there exist numbers fib"), . . . , b$) such that 

bb")+ . . . +8$'=1 
and, if 

m 

~ r , ( v ~ - o ( " ) g * n  dt=O, i =  1 , .  . . , m. 1 
Indeed, upon substituting (19) into (20), one has that (18) and (20) constitute m + 1 linear algebraic 
equations for the m + 1 unknowns fig), . . . , /3$). Moreover, because of (18) and the fact that each 

satisfies the boundary conditions for the discrete vorticity, o(") defined by (19) satisfies these 
boundary conditions as well. Now let 

Then 
and (17) are linear equations, the pair (I)("), d")) satisfies the Newton equations 

satisfies all the boundary conditions on the discrete streamfunction and, because (16) 

lQ o(")[dR - 1 grad@") * grad[dQ = { [go zdt + [g i  * .rdz for all [ E V" (22) 
R ro i = l  ri 

and 

v JQ gradw'") * grad4dR + C(I+P- '), d"), 4)  + C($("), o("- '), 4)  

= C(I,P- l),  w ( " - ~ ) ,  4) for all 4 E yh. 

The unknowns a?), i =  1, . . . , m, are approximated at the nth Newton step by 

Thus (16H21) indicate how the Newton iterates [$("), d"), (a!"), i =  1, . . . , m)] are updated. 

Remarks 

1 .  Each Newton step requires the solution of the m+ 1 linear systems (16), (17). However, the 
left-hand sides of these systems are all identical so the major portion of the computation, i.e. the 
Gauss elimination steps, need be carried out only once per Newton iteration. 

2. This algorithm takes explicit advantage of the linearity of the boundary conditions and of the 
defining systems for the Newton iterates. Also, each Newton iterate [$("), d"), (af", i =  1, . . . , m)], 
n>O, is required to satisfy the auxiliary condition (5) or (20). Of course the individual Newton 
iterates do not satisfy the discrete system (12), (13); indeed, the Newton iteration is carried out until 
(12), (13) are satisfied to within some predetermined tolerance. 

3. The algorithm may be started with arbitrary values'of I)(') and do). However, it is usually a 
good idea to use the solution at lower values of the Reynolds number to help determine these 
initial guesses. Also, it is often desirable to perform a couple of steps of the simple iteration scheme 
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SR w(")jdR - S grad$(") - gradcdQ = (go * zdz + 2 { Cgi - zdz for all c E vh (25) 
R Sro, i = l  r, 

and 

v grad&) * grad+dQ + C($("- '), d"), 4)  = 0 for all 4 E y h  (26) 

before switching to the Newton method. The reason for this is that the scheme (25), (26), although 
only linearly convergent, converges for a larger range of initial data than does the Newton scheme 
(22), (23). Of course, for multiply connected domains, the analogue of (1 6H21) may be defined for 
the scheme (25), (26). Also, through the use of a few flag variables, the Newton scheme and the 
simple iteration schemes may be easily implemented within the same code. 

4. The guesses {ay-"', . . . , a(,"'s)), s = 0, . . . , m, needed for each n in order to define (1 6), (17), may 
be arbitrarily chosen except for the mild requirement that the (m + 1) x (m + 1 )  matrix whose sth 
row is given by { 1, df-'), . . . , c r ~ ~ ' ) }  be non-singular. For example, one may choose c@s)=his for 
i , s = l , .  . , , m and 0 ~ ~ ~ ~ ) = 1  for i = l , .  . . , m. 

5. Since we are solving (12), (13) as a coupled system, no artificial boundary conditions on the 
vorticity need be specified at boundaries where the velocity is specified, e.g. solid walls. 

6. With regard to the degree of the polynomials used in defining the various sets of trial and test 
functions, there are two choices which suggest themselves. First, we have I = k = r = j 2 1, so that all 
test and trial sets employ the same degree polynomials. This choice has been used successfully by 
various researchers and has been subject to mathematical analyses. Secondly, for various practical 
as well as mathematical reasons, the choice 1 = k + 1 2 2 suggests itself. Here the streamfunction 
trial functions are polynomials of one degree higher than the vorticity trial functions. One cannot 
choose r = 1 and j = k since in this case, even for the linear Stokes problem, the discrete system is 
singular. However, in Reference 4 the choice r = k =  1 and j = 1 = 2  was used successfully in 
computations. Note that in this case the degrees of the polynomials in the test and trial sets are 
reversed. 

7. We now briefly summarize what is known about the accuracy of finite element approxi- 
mations of (l), (2). Rigourous results have been obtained only for the case of velocity boundary 
conditions, i.e. $ and d $ / d n  specified on all boundaries. For the case of all test and trial sets 
consisting of the same degree piecewise polynomials, we have' that, for sufficiently smooth exact 
solutions $ and w of (l), (2), 

where I = k = Y = j 2 1 is the degree of the polynomials used, CJ = 1 for I =  1 and CJ = 0 for I > 1. 
Essentially, this estimate is not optimal with regard to the power of h for either the derivatives of 
the streamfunction, i.e. the velocity components, or for the vorticity. 

8. There is both computational and theoretical evidence that the estimate (27) is not sharp. In 
References 6 and 7 some computational experiments are given which indicate that the derivatives 
of the streamfunction are optimally approximated by the finite element approximation in the 
sense that 

This improved estimate is confirmed, in the case of the linear Stokes problem, in Reference 10. 
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9. We now present the results of some simple computational experiments illustrating the above 
algorithm in the case of doubly connected domains. In all cases the exterior boundary To is the 
unit square. The single interior boundary rl is that of a rectangle located within the unit square. 
On rl we specify q1 = O  so that $=a ,  on r, for some unknown constant a,. The three different 
problems considered are characterized by the boundary values of $ on the left and right edges of 
To and the position of the inner rectangle. We denote by 51, the region bounded by rl. We then 
consider the three problems 

A: $(O, Y) = w, Y) = 2Y3 - 3Y2, Q, = w 4 ,  1/21 x (1/2, 3/4), 
B: $(O,Y)= t j l ( l ,Y)=2Y3-3Y2,  Q,=(1/4, 1/2)x(1/4, 1/2), 
c: Ic/(O,Y)=w,Y)=Y*, a, = (2/5, 3/5) x (2/5, 3/5). 

The boundary conditions on $ at y = 0 and y = 1 are compatible constant values and d $ / h  = 0 on 
all boundaries. Note that owing to the symmetry of problem A in that case a, = - 1/2. All 
computations were carried out using a uniform mesh size. Results for the approximation of the 
value of the constant a, are summarized in Table I for different values of the grid size h and 
Reynolds number Re. 

VELOCITY-VORTICITY FORMULATIONS IN THREE DIMENSIONS 

The streamfunction-vorticity formulation may be extended to three-dimensional problems, where 
now both the streamfunction Jr satisfying u =curl+ and the vorticity o=curlu are vector-valued 
functions. Thus in this setting the primitive variable formulation has less unknown fields, i.e. the 
velocity u and the pressure p ,  than does the streamfunction-vorticity formulation. Furthermore, 
unlike two-dimensional settings in which the streamfunction is uniquely determined except for an 
additive constant, in three-dimensional settings a gradient of any scalar function may be added to 
+ without affecting the velocity field. This non-uniqueness may be removed in many ways; 
perhaps the most popular is to require that divJr = 0 throughout 51. Note that the components of o 
are related, by definition, through the relation divo=O as well. 

Another problem is the transformation of velocity boundary conditions into boundary 
conditions for Jr. This is a relatively easy task for two-dimensional problems. In three dimensions 
we have that if, e.g., u = 0 on a portion of the boundary, then curl@ = 0 there. The latter is not, in 
general, a boundary condition which discretizes easily. 

Table I. Computational results for a, for doubly connected 
problems using piecewise linear functions 

h Re=O Re= 1 Re= 10 

1/16 

1/16 

c { :A, 
1/15 

-0.417 
- 0.466 
- 0.482 
-0.214 
- 0.235 
- 0.250 

0.372 
0.377 
0.378 

-0.418 
- 0.468 
- 0.484 
-0.216 
-0.238 
-0.253 

0.371 
0.314 
0.375 

-0.429 
-0.487 
-0.501 
-0'235 
- 0'268 
- 0.28 1 

0.348 
0.347 
0.347 
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An alternative formulation uses the velocity and vorticity as variables and is given by 

divu=O in R, (28) 

cur lu=o in 0, (29) 

vAo=u*grado-o-gradu in R. (30) 

Of course velocity boundary conditions are easy to apply. On the other hand, unlike the 
streamfunction-vorticity formulation, one has to deal with the incompressibility constraint (28). 
However, it is not as difficult to deal with this constraint here as it is in the primitive variable 
setting. 

If o is known, (28), (29) form a first-order system for u; on the other hand, if u is known, (30) is a 
second-order system for o. Unfortunately, on boundary segments where the velocity is specified, 
(28), (29) have too many boundary data and (30) not enough. For example, (29), (30) is uniquely 
solvable if only u w  is specified on the boundary. However, as a whole, (28H30) are well posed with 
just u specified at the boundary, e.g. at solid walls one need not specify a. 

On the other hand, one would like to avoid solving for the six scalar fields of u and o 
simultaneously, so that one would like to solve for u from (28), (29) using some approximation for 
o, and then solve for o from (30) using some approximation for u. To accomplish the first task, one 
must decide which, if any, of the boundary conditions for u are not to be enforced. To successfully 
solve (30) for o, one must 'make up' a boundary condition for the vorticity on boundary segmenfs 
where the velocity is specified. 

Boundary conditions for the velocity-vorticity formulation 

Some authors have chosen to only impose the normal component of the velocity in conjunction 
with the system (28), (29). The tangential components of the velocity are imposed in an indirect 
manner through an artificial boundary condition for the vorticity. Although, given o, simply 
imposing the normal velocity is sufficient to solve this system, it seems wasteful not to use the 
known tangential components of the velocity field at the boundary in as direct a manner as 
possible. Therefore we suggest that the velocity field be made to satisfy the given boundary 
conditions directly. Thus, if for simplicity we are given that u = g  on the boundary r, we will 
require that all components of the discrete velocity field satisfy this condition or an approximation 
to this condition. Since, in some sense, we now have 'too many' boundary conditions for (28), (29), 
we solve these in a least-squares manner. 

The above observations suggest that we solve the problem (28)+30) with, for simplicity, u = g on 
r through the following iterative process. Starting with some arbitrary guess do), let ocO)=curlu(o); 
then solve, for n= 1, 2, . . . , 

divu(")=O in R, (31) 

in R, (32) 

dfl)=g on r (33) 

(34) 

curIu'"' = - 1) 

for u(") and 

vAm(") = u(") grad ~ ( " 1 -  o(") - grad u(") in 0 

for d"). We still need to define boundary conditions for d") so that (34) may be uniquely solved. 
Here there are a least two choices which suggest themselves. One may simply require that 
a('') = curlu(") on the boundary r. Another choice is 
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(35) 

(36) 

divw(")=O on r, 
a(") x n = curlu(") x n on r. 

It is well known that because of (31) the data g must have zero mean over r; we assume that this 
is the case. However, for (31H33) to have a solution, we must also have that divo("-')=O on R. 
This motivates the choice of boundary condition (35). Indeed, by taking the divergence of (34), we 
find that A(divo("))- u(").grad(divo(")) = 0 in 52, so that together with (35) this implies the desired 
result divw(") = 0 in 52. Thus all the vorticity iterates are divergence-free. The boundary condition 
(36) simply fixes the tangential components of the vorticity. 

Finite element discretizations 

We now turn to finite element discretizations of the two problems (31H33) and (34)-(36). We 
now use u(") and a(") to denote the discrete velocity and vorticity respectively, and g now denotes 
some approximation to the given data along the boundary. Sets of finite element spaces for the 
velocity and vorticity are defined in the usual manner; we denote these by "f and W respectively. 
We define the sets "fg=(veY (v=g on r) and W$")= ( [EW )&xn=curlu(")xn on r) and the 
spaces Yo = (v E V I v = 0 on r) and Wo = (5 E W 15 x n = 0 on r). Then, starting with the initial 
guess do) as above, for n =  1, 2, . . . , we compute u(")EV~ such that 

(curlu(").curlv + divu("'divv)dR = o("-').curlvdR for all v €6 (37) s. s. 
and then w(")E W$") such that 

~Q(curlo(") .cur l~+divo"divi)dn+ (u(").gradcu(")-o(").gradu(")).~d52=0 for all & E  Wo. 

The discrete problems (37) and (38) are. respectively based on a least-squares variational 
formulation of (31H33) and a Galerkin variational formulation of (34H36). Individually, these 
discretization methods are known to be well suited for the corresponding problems. Note that the 
boundary condition (35) is natural to the weak formulation (38). 

The weak form (37) is identical to that which would be obtained from a standard Galerkin 
discretization of the system 

(38) 
1. 

-A&) = Curl"("- 1) in 52, u(")=g on r, 
which is easily obtainable from (31H33) by differentiating. This last system has exactly the right 
boundary conditions for u(") and thus it is not surprising that (31H33) are solvable by a least- 
squares technique, even though at first glance there seem to be too many boundary conditions. 

We have not carried out extensive calculations based on the above algorithm, nor have we 
attempted to analyse its convergence properties; we hope to do both in the near future. 

RECOVERY OF THE PRESSURE FIELD 

Once the velocity field is known, either directly or by differentiating the streamfunction, the 
pressure is commonly recovered by the following process. First one takes the divergence of the 
momentum equation to obtain 

-Ap=div(u*gradu-vAu), (39) 
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where p denotes the pressure and the constant density has been absorbed into p .  Corresponding to 
(39), one then sets up a weak formulation 

where G(-; u) is a linear functional. Various forms for this functional have been suggested by 
different authors; see Reference 1 1  for a complete discussion. In (40) neither the trial functions p 
nor the test functions 4 are required to satisfy any boundary conditions. Of course (40) may be 
discretized by standard finite element techniques, Comparing (39) and (40) shows that the latter 
implies that p satisfies a natural boundary condition whose particular form depends on the specific 
choice made for G(*; u). After much confusion and misunderstanding concerning which natural 
boundary condition is physically correct, this question has recently been settled in Reference 11 
where the correct choice for G(-;  u) is discussed. 

However, the use of (39) or (40) is still problematical when used in conjunction with a 
streamfunction-vorticity or velocity--vorticity calculation. The velocity field is only approxi- 
mately known, and thus the differentiation process used to derive (39) introduces unnecessary 
additional errors. (Indeed, if the velocity is derived from a discrete streamfunction, the right-hand 
side of (39) involves the second derivatives of that streamfunction.) Related to this is the fact that, in 
a strict mathematical sense, the right-hand side of (40) may not be well defined for discrete 
velocities belonging to the usual finite element spaces. 

We briefly describe an alternate method of recovering the pressure which does not encounter 
any of the above difficulties; in particular, absolutely no boundary conditions on the pressure are 
needed at solid walls. Furthermore, only the discrete velocity and vorticity are needed and not 
derivatives of the velocity. This method is based on one given in Reference 12 for the fourth-order 
streamfunction formulation. 

We begin by noting that the momentum equation may be written in the form 

grad H = - vcurlo + u x o, (41) 
where H = p  +(u-u)/2. (Again, the constant density is absorbed into p. )  Then, for any sufficiently 
smooth vector-valued field v vanishing on r, we have 

[QHdivvdR=[Q(o-v x u-vo-cur1v)dR. 

At this point we could try to discretize (42); however, this will in general not lead to a practical 
algorithm. Roughly speaking, the problem is that discrete versions of (41) do not usually have 
right-hand sides which are in the range of the discrete approximation to the gradient. 

This problem is easily remedied by introducing the auxiliary variable w and then considering 
the linear Stokes problem for w and H :  

Aw+gradH= - v c u r l o + u x o  in R, (434 

divw=O inR ,  (43b) 

w = O  o n r .  

If the right-hand side of (43a) is in the range of the gradient, as is the case for the exact solutions o 
and u, then it is easily shown that w = O  and that therefore H satisfies (41). 
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Thus, given o and u, we will use (43) to determine H ,  after which p is easily determined. Our 
procedure does not require any boundary conditions on H or p ,  except for fixing one of these at a 
single point in the flow. Of course this is perfectly natural since the pressure is determined only up 
to an additive constant. 

A discretization of (43) is effected by using stable finite element spaces for the primitive variable 
formulation of the Navier-Stokes equations. Thus we seek approximations to H and w belonging 
to a pressure finite element space and a velocity finite element space respectively, such that the 
standard weak form of (43) holds. Specifically, we choose a pressure finite element space 9" and a 
velocity space -Y- ", the latter satisfying homogeneous boundary conditions, and then seek W"E V h  
and H"E@ such that 

-[ngradw"*grad*v"dQ+ H"divv"dQ= (o-v" x u- vo.curlv")dQ for all vhe Vh, s. 
[* qhdiv w"dQ = 0 for all 4" E 9". (44) 

There are many such primitive variable spaces known (e.g. see References 8 and 13) which result in 
accurate approximations to H. We note that if a stable finite element pair is used for 
approximating H and w, then ~ " 4 0  as h+O and, of course, H " - t H .  

In general the right-hand side of (43) or (44) is only known discretely, e.g. o and u are found from 
a streamfunction-vorticity or velocity-varticity calculation. Thus one cannot expect to be able to 
find the pressure to arbitrary accuracy. In fact the pressure can be approximated only as 
accurately as the vorticity used in the right-hand side of (44). For example, if peicewise linear 
elements are used for the streamfunction and vorticity, the vorticity approximation is at best O(h) 
accurate and thus one may use piecewise constant pressure spaces and likewise compute an O(h) 
approximation to the pressure. 
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